Connect with us

Hi, what are you looking for?

Equivalent Resistance
Equivalent Resistance

Circuit Theory

How to calculate Equivalent Resistance?

Equivalent Resistance of a circuit is obtained by calculating parallel and series elements in a circuit. A circuit may contain many series and parallel connected elements. In this topic on How to calculate Equivalent Resistance, we have to simplify the circuit elements.

To find the value of a resistor, a multimeter of Resistor Color Coding method can be used.

To calculate the Equivalent Resistance of the above circuit we need to simplify each part. In this example, start simplifying from the parallel resistor configuration.

The formula to use:

Rp = R1R2/ (R1 + R2)

Rs = R1 + R2

Let’s start to simplify from each part.


Equivalent Resistance1


Code Conversion | Excess-3 T0 Bcd Converter 

In this part, the following resistors 6Ω are 7Ω connected in a parallel configuration.

Rp = 6 * 7/ (6 + 7)

Rp = 42/ 13

Rp = 3.2307

Rp = 3.231Ω

(Good practice is to round off three digits)


Equivalent Resistance2

Here the resistors 2Ω and 4Ω are connected in a parallel configuration.

Rp = 2 * 4/ (2 + 4)

Rp = 8 / 6

Rp = 1.3333

Rp = 1.333Ω


Equivalent Resistance image 3

Methods of Neutral Grounding | Neutral Earthing

Here the resistors 3Ω and 5Ω are connected in a parallel configuration.


Rp = 3 * 5 /(3 + 5)

Rp = 15 / 8

Rp = 1.875 Ω

Equivalent Resistance 4 

Here the resistors 8Ω and 9Ω are connected in a parallel configuration.

Rp = 8 * 9 / (8 + 9)

Rp = 72/ 17

Rp = 4.235 Ω

Equivalent Resistance5

 Power System Protection | Relay Roles

Here the following resistors 1Ω and 10Ω are connected in a parallel configuration.

Rp = 1 * 10/ (1 + 10)

Rp = 10/ 11

Rp = 0.909 Ω

Now add all the values which you got from simplifying the Parallel Configuration. The reason why we are adding is each and everything is connected in a series configuration.

Now the circuit is simplified as follows.

Final Circuit simplified


Rs = 3.231Ω +  1.333Ω + 1.875 Ω +  4.235 Ω + 0.909 Ω

Rs = 11.583 Ω  which is also the Equivalent Resistance.

Rab = 11.583 Ω

This example is applicable only for simple circuits. For circuits with more complexity, there were network reduction theorems. We can’t solve complex circuits only with this formula, This doesn’t mean we can’t solve but what I am saying is it was practically difficult to solve.

Here I have shown an example with 2 parallel resistors. For ‘n’ parallel resistors use this formula to reduce the network.

1/Rp = (1/R1) +(1/R2) + (1/R3)….. + (1/Rn)


Rp = R1R2R3Rn/ (R1 + R2 + R3 + Rn)

You may also interested in:




You May Also Like

Digital Logic Circuits

Excess-3 to BCD converter In this post on code conversions, we are going to see Excess-3 to BCD converter using k map technique.  K-map If you...

Digital Logic Circuits

BCD to Excess-3 converter In this post on a code converter, we are going to see BCD to Excess-3 converter using the k-mapping technique....

Digital Logic Circuits

Laws Of Boolean Algebra The Laws Of Boolean Algebra is provided here. OR A + 0 = A A + A’ = 1 A...



Introduction If you’re looking for a fun and easy way to learn how to play online baccarat, check out UFABET WIN. This website offers...


We have been using plastic water bottles for so long. Have we ever thought about what damage it can cause to the environment? How...

Home Improvement

With open-plan living being so popular, our houses don’t often have a small, cozy space that we can retreat to. A snug room, called...


If you’re in the market for a new car, we’ve got just the solution: we buy them in any condition. From damaged wrecks to...

Gun Guides

410 ammo is popular shotgun ammunition, widely used in hunting and target shooting. 410 ammo is a type of shotgun ammunition that uses a...


Your choice of foods can interfere with the functioning of beneficial bacteria that are needed by your gut and your digestive system to boost...